Utilization for Real-World Data on Post Marketing Drug Safety assessment in PMDA

Atsushi Noguchi
Office of Medical Informatics and Epidemiology
Pharmaceuticals and Medical Devices Agency (PMDA)
Japan
1. More scientific contributions during development through consultation

2. Utilizing “BIG DATA” for improving quality of approval review and safety assessment

3. Promoting regulatory science
 - Developing methods and criteria for responding to advances in science and more

Nature Reviews Drug Discovery 13, 490 (2014)
Today’s Agenda

• Limitation of traditional process of the post-marketing drug safety assessment
• MIHARI Project
• MID-NET Project
• Point to consider in utilizing EMRs for drug evaluation
• Future perspectives
Today’s Agenda

• Limitation of traditional process of the post-marketing drug safety assessment
• MIHARI Project
• MID-NET Project
• Point to consider in utilizing EMRs for drug evaluation
• Future perspectives
Traditional process of drug safety measures in Japan

Drug safety assessment using the conventional data sources

- Spontaneous ADR report DB
- Literatures
- Overseas regulatory actions
- Presentation in Academic Conference
 etc

MHLW: Ministry of Health, Labour and Welfare, Japan
Limitations of traditional process

• Under-reporting of ADR (Reporting biases)
• Lack of adequate denominator information of drug utilization for estimation of risk
• Not available of the comparative incidence rates between drugs in post-marketing studies that had no comparison group
• Sometimes difficult to distinguish ADR from events associated with underlying diseases or other factors

Other source of information and other methods are required
– To strengthen post-marketing drug safety measures and compensate for the limitations
PMDA’s challenges

• Two projects to reinforce and enhance post-marketing drug safety measures in PMDA
 ➢ **MIHARI Project** (MIHARI means “monitor” in Japanese)
 Establishment of a framework in PMDA to utilize Pharmacoepidemiological methods for safety assessment of a drug
 ➢ **MID-NET Project** (Medical Information Database NETwork)
 Establishment of a new medical information database in Japanese patients for safety assessment of a drug
Today’s Agenda

• Limitation of traditional process of the post-marketing drug safety assessment

• MIHARI Project

• MID-NET Project

• Point to consider in utilizing EMRs for drug evaluation

• Future perspectives
MIHARI Project

Medical Information for Risk Assessment Initiative
Goal of MIHARI Project

Drug safety assessment using the conventional information sources:
- Spontaneous ADR report DB
- Overseas regulatory actions
- Literature
- Presentation in Academic Conference
- etc.

Drug safety assessment using the electronic healthcare data:
- Claims DB
- MID-NET (EMR DB)
- DPC DB
- etc.

PMDA

MHLW

Medical institutions

Safety measure

Risk communication
Methods & Applications in Pharmacovigilance

Signal Detection
- **Data Mining**
 Detect primary signals from all pairs of drugs and events by data mining method.

Signal Refinement
- **Drug utilization study**
 Survey for patient background or prescription trend in a specific population defined by diagnosis or drug
- **Evaluation of effects of regulatory actions**
 Survey for prescription trend or compliance of cautions after a regulatory action is taken

Alert detection
- Secondary signal detection of specific combination of event and drug by pharmacoepidemiological methods

Signal Evaluation
- **Causal Effect Measurement**
 Estimate association of specific pair of drug and event by pharmacoepidemiological method.
- **Case Validation study**
 Validate some case definitions for database study by medical chart review.
MIHARI’s Investigative Approach in the pilot phase

Ensuring Access to Electronic Health Record Data
- Data collection scheme
- Data cleaning method

Data Characterization
- Data validation
- Data limitation

Data Utilization
- Epidemiological studies
- Interpretation of study results
MIHARI’s Investigative Approach in the pilot phase

Ensuring Access to Electronic Health Record Data
- Data collection scheme
- Data cleaning method

Data Characterization
- Data validation
- Data limitation

Data Utilization
- Epidemiological studies
- Interpretation of study results
Current data sources available in Japan (1)

- **Claims data**
 - The data for the purposes of reimbursement
 - Data in the standardized format is created
 - Claims data from health insurance associations
 - About 2 million patients
 - Commercially available
 - National Claims data from government
 - Almost all of patients in Japan (over 127 million patients)
 - Applicants approved through a rigorous review can use

- **Diagnosis and Procedure Combination (DPC) data**
 - Prospective payment system for acute inpatient medical care
 - Data in the standardized format is available
 - Holders of databases perform all analysis in response to requests
Current data sources available in Japan (2)

Electrical Medical Record (EMR)
- EMR includes detailed information on medical practices within medical institution
 - EMR includes data from HIS (Hospital Information System)
 - One is the key feature is that the data includes the laboratory test results
- HIS data is created by customized system according to each hospital’s need
 - HIS data needs to be transformed into a standardized format
- EMR available in Japan
 - MID-NET (described below)
 - Some researchers may use the standardized EMR by collaborating with some medical institutions
MIHARI’s Investigative Approach in the pilot phase

Ensuring Access to Electronic Health Record Data
- Data collection scheme
- Data cleaning method

Data Characterization
- Data validation
- Data limitation

Data Utilization
- Epidemiological studies
- Interpretation of study results
Pilot studies in the pilot phase (2009-2013)

• More than 40 pilot studies were conducted
 ➢ To assess the feasibility of applying the well-known pharmacoepidemiological design/methods to drug safety assessment with Japanese electronic healthcare data
 ➢ In pilot studies, already well-known safety issues were evaluated
The design/methods used

• Design
 – Cohort design
 – Nested case control design
 – Sequence Symmetry Analysis
 – Self-controlled case series
 – Validation study

• Methods
 – Segment regression analysis
 – Propensity score (PS) methods for control confounding
Example: Impacts of regulatory action (anti-Influenza drug)

Objectives:
To assess impacts of regulatory safety measure for an individual products using the Japanese claims data
Example: Risk of acute asthma attack associated with NSAIDs: A Self-Controlled Case Series (1)

- **R0** = 7 days before prescription start date
- **R1** = the prescription start date
- **R2** = 1–9 days after the prescription start date
- **R3** = > 9 days after the prescription start date
- **R4** = 7 days after the prescription end date

Definition of acute asthma attacks: the combination of an inhalation procedure and the prescription of any inhaled β2-agonist.

Example: Risk of acute asthma attack associated with NSAIDs: A Self-Controlled Case Series (2)

| Characteristics of the Study Population Who Had Been Prescribed NSAIDs and Had Experienced an Acute Asthma Attack (N = 9769 Patients) |
|---|---|
| Gender | N | % |
| Men | 4562 | 46.7 |
| Women | 5207 | 53.3 |
| Age range, y | N | % |
| 0-9 | 1082 | 11.1 |
| 10-19 | 1583 | 16.2 |
| 20-29 | 1530 | 15.7 |
| 30-39 | 2663 | 27.3 |
| 40-49 | 1837 | 18.8 |
| 50-59 | 783 | 8.0 |
| 60-69 | 259 | 2.7 |
| ≥70 | 32 | 0.3 |

Abbreviation: NSAID, nonsteroidal anti-inflammatory drug.

*At the start of each patient’s observation period.

Example: Risk evaluation of Atypical Antipsychotics (AAP) for Hyperlipidemia

Other activities (1)
(Cooperation with other office)

Requests from other office
✓ Literature review
✓ Pharmacoepidemiological studies using electronic healthcare database
Targeted drug: Lithium Carbonate
- Drug for treatment of mania and mania status
- It can cause lithium poisoning if blood lithium level is uncontrolled

PMDA conducted a survey using claims data\(^1\).

The serum lithium level might have never been measured\(^2\) in 1,200 of 2,309 patients (52%) who were prescribed lithium carbonate

\(^1\) Data from January 2005 to December 2010 provided by Japan Medical Data Center Co., Ltd.
\(^2\) Lithium level measurement was defined as “performed” when the specific drug therapeutic management fee was recorded during the data period.

Guideline for conducting pharmacoepidemiological safety studies using electronic healthcare database

- Published in March 2014
- This guideline is intended to provide points to consider when PMDA and industries conduct pharmacoepidemiological studies for the assessment of safety issues

Sorry, Japanese only
Challenges in MIHARI Project

Pilot Phase (2009-2013):
- Developed framework for access to electronic healthcare database
- Assessed the feasibility of applying the well-known pharmacoepidemiological methods to drug safety assessment with Japanese electronic healthcare data

Operational Phase (2014-2018):
- To apply the framework into the current risk management process of drug safety
 - Strengthening cooperation with the office of review and the office of post-marketing safety in PMDA
- To establish an access to another database and additional pharmacoepidemiological methods using electronic healthcare data
 - Continuing to assess the feasibility of applying more advanced methods to drug safety assessment
• Limitation of traditional process of the post-marketing drug safety assessment
• MIHARI Project
• MID-NET Project
• Point to consider in utilizing EMRs for drug evaluation
• Future perspectives
Overview of MID-NET Project

- MID-NET is a project initiated by MHLW / PMDA to establish the EMR DB network for post-marketing drug safety measures using electronic healthcare data.
Data categories in the MID-NET system

- **Database**
 - HIS data
 - Claims data
 - DPC data

HIS data

- Patient identifying data
- Medical examination history data (including admission, discharge data)
- Disease order data
- Discharge summary data
- Prescription order/compiled data
- Injection order/compiled data
- Laboratory test data
- Radiographic inspection data
- Physiological laboratory data
- Therapeutic drug monitoring data
- Bacteriological test data
Data integration method of MID-NET

Onsite Center

User

① Create program

② Request for running program

Technical staff for MID-NET

③ Approve the request

④ Output

Standardization Anonymization

Common data model database for MID-NET

Hospitals

Original databases
- Medical record
- Labo test data
- Claims
- Others

Technical staff for MID-NET

⑤ Approve to send data

⑥ Send data

Central data center

⑦ View & Analysis

⑧ Output

individual level data

Summarized data

SAS® etc

SAS® etc

Summarized data

OR

individual level data

Summarized data
Personal data flow in MID-NET

Extraction of data w/ script

Central data center

Closed network

Hospital

- Hospital information system (HIS)
- Standardized data of HIS (HIS DB)
- DBMS

- Patient/outpatient Data (w/o ID)

Conversion to Statistical data

User

- Result of meta-analysis

Used only by Hospital

- w/ patient ID
- w/ name
- w/ address
- w/ zip code

Used by User

- w/o patient ID (sequential number added instead of ID)
- w/o name
- w/o address
- w/o zip code
- w/ date of all event (altered by random number)
- w/o correspondence table
The features of MID-NET

- **Strengths**
 - Available of various types of data (HIS data, Claims data and DPC data)
 - Including laboratory test results
 - Real time synchronization to medical record in the hospital

- **Limitations**
 - Number of hospitals participating in the MID-NET is currently limited (only 23 hospitals)
 - No link of data from different hospitals for a patient
Challenges for implementing MID-NET

Data standardization on medical information and quality check

Using localized Health Level Seven (HL-7) standard, but many ambiguous points

Clear rules for secondary use of EMRs with public understanding

PMDA will actively contribute to utilization of EMRs for public health promotion
Plans for full-scale utilization

<table>
<thead>
<tr>
<th>FY2011-2014</th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY2017</th>
<th>FY2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database developed</td>
<td>Data quality check</td>
<td>Verification of operation of the system and upgrade of the system</td>
<td>Trial utilization of MID-NET by PMDA / MHLW and 23 collaborating hospitals</td>
<td></td>
</tr>
</tbody>
</table>

- Assessing the validity of health outcomes definitions
- Conducting pilot studies using MID-NET

Consideration of process for utilization of MID-NET by third parties such as academic researchers and industries

Full-scale utilization
Today’s Agenda

• Limitation of traditional process of the post-marketing drug safety assessment
• MIHARI Project
• MID-NET Project
• Point to consider in utilizing EMRs for drug evaluation
• Future perspectives
Point to consider in utilizing EMRs for drug evaluation -PMDA’s experiences in MIHARI-

- Data reliability
 - In addition to ensure an appropriateness of study design and data analysis, quality of database itself should be checked in advance.

- Selection of database
 - Characteristics of database (data holder, data periods, sample size, patients background, traceability, collected items, procedure for access etc.) should be confirmed in advance.
Proper planning and design of a study and analysis

✓ Refer to the guideline on conduct of pharmacoepidemiological study utilizing medical record database for drug safety assessment (published on March 31st, 2016)

• Make all efforts to understand how a target item was used in clinical practice
 ✓ Different diagnosis for claim
• Carefully consider clinical meaningfulness of an event definition
• Set a comparator for better interpretation of results
Selection of appropriate data period and timing for a study

✓ Generally, data for a few years
✓ A timing for a study
 • How many years after approval would be appropriate for a study purpose?

An integrated assessment based on results of more than one study

✓ Confirm in 2 or more studies
✓ Careful assessment with consideration of study limitations
Today’s Agenda

• Limitation of traditional process of the post-marketing drug safety assessment
• MIHARI Project
• MID-NET Project
• Point to consider in utilizing EMRs for drug evaluation
• Future perspectives
Future perspectives

• Accumulating more regulatory experiences on pharmacoepidemiological analysis
 – More PEpi study for a individual product
 – Implementation of MID-NET

• Promotion of PEpi analysis for safety assessment by industries
 – More guideline on Pepi
 – Scientific consultation on PEpi data

• Nurturing more pharmacoepidemiologist

• International cooperation for sharing experiences/ knowledge in utilizing those data for regulatory purposes
Active utilization of EHR databases toward advanced medical care

Regulatory decisions based on better scientific evidences
- Proper safety assessment utilizing EHR databases in addition to the traditional approaches

RMP implementation utilizing EHR databases
- Efficient risk management
- Better quality of safety information

Provide leading-edge Medical Therapy with ensuring Safety
- Scientific and speedy safety measure

Better quality of Medical Care
- Maximize benefit/risk ratio
Thank you for your attention

- PMDA web site (English)

- E-mail:
 noguchi-atsushi@pmda.go.jp